
Java’s Map Classes

Java has two general purpose classes that implement maps:
TreeMap<K, V>
HashMap<K, V>

For example, to make a map with keys that are strings and values that are
Integers we might have

TreeMap<String, Integer> map1 = new TreeMap<String, Integer>();
or

HashMap<String, Integer> map2 = new HashMap<String, Integer>();

The most important methods of the two classes have the same names:
• V put(K key, V value) This adds the (key, value) pair to the map.

If the key was already a key of the map this returns the prior
value that was associated with it; otherwise it returns null. You
can usually just ignore the return value.

• V get(K key) This returns the value associated with the given key,
or null if the key is not associated with a value. Note that
Python’s dictionaries crash if you try to look up the value
associated with something that isn’t a key; Java’s maps just return
null.

• Boolean containsKey(K key)
• Set<K> keySet() This returns a set of all of the keys in the map.

For example, if I wanted to print all of the information in map2, which
is a TreeMap<String, Integer>, I could say

for (String k: map2.keySet())
System.out.printf(“(%s, %d)\n”, k, map.get(k));

If I needed to sort the keys before printing I could put them in a list
and sort it:

ArrayList<String> L = new ArrayList<String>();
L.addAll(map2.keySet());
Collections.sort(L);
for (String k: L)

System.out.printf(“(%s, %d)\n”, k, map.get(k));

There is also a 2-argument constructor for HashMaps:

HashMap(int initialCapacity, float loadfactor)

The default loadfactor if you don’t specify one is 0.75

If size/capacity ever becomes larger than the loadfactor the map is
automatically rehashed to a table twice as large. This is time-
consuming, so try to make your initial capacity large enough to
hold all of your data.

